

Bachelor of Science (B.Sc.) Semester—III (C.B.S.) Examination
MATHEMATICS (M₅-Advanced Calculus, Sequence and Series)

Paper—I

Time : Three Hours]

[Maximum Marks : 60]

Note :—(1) Solve all the **FIVE** questions.

(2) All questions carry equal marks.

(3) Question Nos. **1** to **4** have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) If two functions $f(x)$ and $F(x)$ are continuous in $[a, b]$ and derivable in (a, b) and $F'(x) \neq 0$ for any value of x in $[a, b]$, then prove that there exist at least one value $c \in (a, b)$ such that :

$$\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(c)}{F'(c)}$$

6

(B) In the Cauchy's mean value theorem :

(i) If $f(x) = \sqrt{x}$, $g(x) = \frac{1}{\sqrt{x}}$, $x \in [a, b]$ then show that the value $c \in (a, b)$ is the geometric mean between a and b , where $a, b > 0$.

(ii) If $f(x) = \frac{1}{x^2}$, $g(x) = \frac{1}{x}$, $x \in [a, b]$, then show that the value $c \in (a, b)$ is the harmonic mean between a and b , where $a, b > 0$.

6

OR

(C) Let $f(x, y)$ and $g(x, y)$ be defined in the open region DCR^2 . If $f(x, y)$ and $g(x, y)$ both are continuous at $P_o(x_o, y_o) \in D$, then prove that $f(x, y) - g(x, y)$ is also continuous at $P_o(x_o, y_o)$.

6

(D) Expand $f(x, y) = e^x \cos y$ by Taylor's series in powers of x and y such that it include all terms upto third degree.

6

UNIT-II

2. (A) Find the envelope of the family of lines $x \cos \alpha + y \sin \alpha = \ell \sin \alpha \cos \alpha$, where α is a parameter. Also give the geometrical interpretation. 6

(B) Find the envelope of the straight line $\frac{x}{a} + \frac{y}{b} = 1$ when $a^m b^n = c^{m+n}$, where a and b are parameters and c is a constant. 6

OR

(C) Discuss the maximum and minimum values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. 6

(D) Use Lagrange's multiplier method to find the maximum and minimum values of $u = x + y + z$ subject to the condition $x^2 + y^2 + z^2 = \ell$. 6

UNIT-III

3. (A) If the sequences $\langle y_n \rangle$ and $\langle z_n \rangle$ converge to ℓ and if $y_n < x_n < z_n \forall n \in \mathbb{N}$, then prove that the sequence $\langle x_n \rangle$ also converges to ℓ . 6

(B) Show that the sequence $\left\langle \frac{n}{n+1} \right\rangle, \forall n \in \mathbb{N}$, is monotonic increasing, bounded and converges to 1. 6

OR

(C) Prove that the sequence $\langle x_n \rangle$ converges if and only if it is a Cauchy sequence. 6

(D) Prove that the sequence $\left\langle \frac{e^n}{n} \right\rangle$ is monotonic increasing, bounded below but not bounded above. 6

UNIT-IV

4. (A) Test the convergence of the series :

$$\sum_{n=1}^{\infty} \frac{(n + \sqrt{n})^n}{2^n n^{n+1}} \text{ by root test.} \quad 6$$

(B) Examine the convergence of the series :

$$\frac{x^3}{1.3} + \frac{x^4}{2.4} + \frac{x^6}{3.5} + \dots \frac{x^{2n}}{n(n+2)} + \dots \text{ by ratio test.} \quad 6$$

OR

(C) Show that the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ is convergent if $p > 1$ and divergent if $0 < p \leq 1$. 6

(D) Prove that the series $\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{1}{n}\right)$ is conditionally convergent. 6

Question—5

5. (A) Verify Rolle's theorem for $f(x) = x^2$ in $[-1, 1]$. 1½

(B) Using ϵ - δ definition, show that :

$$\lim_{\substack{(x, y) \rightarrow (1, 2)}} (3x + y) = 5. \quad 1\frac{1}{2}$$

(C) Find the envelope of $y = mx + \frac{1}{m}$, where m is a parameter. 1½

(D) Define extreme point and saddle point of a function $f(x, y)$. 1½

(E) Prove that $\lim_{n \rightarrow \infty} \frac{2+3 \times 10^n}{1+5 \times 10^n} = \frac{3}{5}$. 1½

(F) Evaluate $\lim_{n \rightarrow \infty} (\sqrt{n+1} - \sqrt{n})$. 1½

(G) Test the convergence of the series whose n^{th} term is $\frac{n!}{n^n}$. 1½

(H) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent by integral test. 1½